Перейти к содержанию

Файл:An infinitely differentiable function which is not analytic illustration.png

Содержимое страницы недоступно на других языках.
Материал из Wikivoyage

An_infinitely_differentiable_function_which_is_not_analytic_illustration.png (500 × 146 пкс, размер файла: 6 КБ, MIME-тип: image/png)

Этот файл из на Викискладе и может использоваться в других проектах. Информация с его страницы описания приведена ниже.

Краткое описание

Существует векторная версия этого изображения. Её следует использовать, если качество её не хуже, чем эта растровая версия.

File:An infinitely differentiable function which is not analytic illustration.png → File:Expinvsq5.svg

Подробнее о векторной графике в статье «Перевод изображений в формат SVG».
Также доступна информация о поддержке формата SVG в MediaWiki.

На других языках
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  中文(臺灣)  +/−
Новое изображение

Перенесено с en.wikipedia на Викисклад участником Maksim.

Первоначальная страница описания находилась здесь. Все нижеперечисленные имена участников относятся к en.wikipedia.
 
Это diagram было создано с помощью MATLAB
Описание An infinitely differentiable function which is not analytic illustration
Дата
Источник Собственная работа
Автор Mathbot
Права
(Повторное использование этого файла)
Public domain Я, владелец авторских прав на это произведение, передаю его в общественное достояние. Это разрешение действует по всему миру.
В некоторых странах это не может быть возможно юридически, в таком случае:
Я даю право кому угодно использовать данное произведение в любых целях без каких-либо условий, за исключением таких условий, которые требуются по закону.
Исходный код
InfoField

MATLAB code

function main()

   thickness1=2; thickness2=1.5; arrowsize=10; arrow_type=2; ball_rad=0.03;
   blue=[0, 0, 1]; black=[0 0 0]; fontsize=floor(20); dist=0.01;
   
   a=-4; b=4;
   h=0.01;
   X=a:h:b;
   Y=zeros(length(X), 1);
   for i=1:length(X)
      x=X(i);
      if x == 0 Y(i)=0;
      else 
	 Y(i)=exp(-1/x^2);
      end
   end

   
figure(1);  clf; hold on; axis equal; axis off
arrow([a 0], [b+0.2, 0], thickness2, arrowsize, pi/8,arrow_type, [0, 0, 0])
arrow([0 -0.3], [0 2.*max(Y)], thickness2, arrowsize, pi/8,arrow_type, [0, 0, 0])
plot(X, Y, 'linewidth', thickness1, 'color', blue);
plot(X, 0*Y+1, 'linewidth', thickness2/1.5, 'color', black, 'linestyle', '--');
arrow([b+0.1 0], [b+0.2, 0], thickness2, arrowsize, pi/8,arrow_type, [0, 0, 0])

ball(0, 0, ball_rad, blue); place_text_smartly(0, fontsize, 5, dist, '0');
ball(0, 1, ball_rad, black); place_text_smartly(sqrt(-1), fontsize, 5, dist, '1');

saveas(gcf, 'An_infinitely_differentiable_function_which_is_not_analytic_illustration.eps', 'psc2')

function place_text_smartly (z, fs, pos, d, tx)
 p=cos(pi/4)+sqrt(-1)*sin(pi/4);
 z = z + p^pos * d * fs; 
 shiftx=0.0003;
 shifty=0.002;
 x = real (z); y=imag(z); 
 H=text(x+shiftx*fs, y+shifty*fs, tx); set(H, 'fontsize', fs, 'HorizontalAlignment', 'c', 'VerticalAlignment', 'c')


function ball(x, y, r, color)
   Theta=0:0.1:2*pi;
   X=r*cos(Theta)+x;
   Y=r*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', color);


function arrow(start, stop, thickness, arrowsize, sharpness, arrow_type, color)

   
%  draw a line with an arrow at the end
%  start is the x,y point where the line starts
%  stop is the x,y point where the line stops
%  thickness is an optional parameter giving the thickness of the lines   
%  arrowsize is an optional argument that will give the size of the arrow 
%  It is assumed that the axis limits are already set
%  0 < sharpness < pi/4 determines how sharp to make the arrow
%  arrow_type draws the arrow in different styles. Values are 0, 1, 2, 3.
   
%       8/4/93    Jeffery Faneuff
%       Copyright (c) 1988-93 by the MathWorks, Inc.
%       Modified by Oleg Alexandrov 2/16/03

   
   if nargin <=6
      color=[0, 0, 0];
   end
   
   if (nargin <=5)
      arrow_type=0;   % the default arrow, it looks like this: ->
   end
   
   if (nargin <=4)
      sharpness=pi/4; % the arrow sharpness - default = pi/4
   end

   if nargin<=3
      xl = get(gca,'xlim');
      yl = get(gca,'ylim');
      xd = xl(2)-xl(1);            
      yd = yl(2)-yl(1);            
      arrowsize = (xd + yd) / 2;   % this sets the default arrow size
   end

   if (nargin<=2)
      thickness=0.5; % default thickness
   end
   
   
   xdif = stop(1) - start(1);
   ydif = stop(2) - start(2);

   if (xdif == 0)
      if (ydif >0) 
	 theta=pi/2;
      else
	 theta=-pi/2;
      end
   else
      theta = atan(ydif/xdif);  % the angle has to point according to the slope
   end

   if(xdif>=0)
      arrowsize = -arrowsize;
   end

   if (arrow_type == 0) % draw the arrow like two sticks originating from its vertex
      xx = [start(1), stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)),NaN,stop(1),...
	    (stop(1)+0.02*arrowsize*cos(theta-sharpness))];
      yy = [start(2), stop(2), (stop(2)+0.02*arrowsize*sin(theta+sharpness)),NaN,stop(2),...
	    (stop(2)+0.02*arrowsize*sin(theta-sharpness))];
      plot(xx,yy, 'LineWidth', thickness, 'color', color)
   end

   if (arrow_type == 1)  % draw the arrow like an empty triangle
      xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
	    stop(1)+0.02*arrowsize*cos(theta-sharpness)];
      xx=[xx xx(1) xx(2)];
      
      yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
	    stop(2)+0.02*arrowsize*sin(theta-sharpness)];
      yy=[yy yy(1) yy(2)];

      plot(xx,yy, 'LineWidth', thickness, 'color', color)
      
%     plot the arrow stick
      plot([start(1) stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness)], [start(2), stop(2)+ ...
		    0.02*arrowsize*sin(theta)*cos(sharpness)], 'LineWidth', thickness, 'color', color)
      
   end
   
   if (arrow_type==2) % draw the arrow like a full triangle
      xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
	    stop(1)+0.02*arrowsize*cos(theta-sharpness),stop(1)];
      
      yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
	    stop(2)+0.02*arrowsize*sin(theta-sharpness),stop(2)];
      
%     plot the arrow stick
      plot([start(1) stop(1)+0.01*arrowsize*cos(theta)], [start(2), stop(2)+ ...
		    0.01*arrowsize*sin(theta)], 'LineWidth', thickness, 'color', color)
      H=fill(xx, yy, color);% fill with black
      set(H, 'EdgeColor', 'none')

   end

   if (arrow_type==3) % draw the arrow like a filled 'curvilinear' triangle
      curvature=0.5; % change here to make the curved part more curved (or less curved)
      radius=0.02*arrowsize*max(curvature, tan(sharpness));
      x1=stop(1)+0.02*arrowsize*cos(theta+sharpness);
      y1=stop(2)+0.02*arrowsize*sin(theta+sharpness);
      x2=stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness);
      y2=stop(2)+0.02*arrowsize*sin(theta)*cos(sharpness);
      d1=sqrt((x1-x2)^2+(y1-y2)^2);
      d2=sqrt(radius^2-d1^2);
      d3=sqrt((stop(1)-x2)^2+(stop(2)-y2)^2);
      center(1)=stop(1)+(d2+d3)*cos(theta);
      center(2)=stop(2)+(d2+d3)*sin(theta);

      alpha=atan(d1/d2);
      Alpha=-alpha:0.05:alpha;
      xx=center(1)-radius*cos(Alpha+theta);
      yy=center(2)-radius*sin(Alpha+theta);
      xx=[xx stop(1) xx(1)];
      yy=[yy stop(2) yy(1)];


%     plot the arrow stick
      plot([start(1) center(1)-radius*cos(theta)], [start(2), center(2)- ...
		    radius*sin(theta)], 'LineWidth', thickness, 'color', color);

      H=fill(xx, yy, color);% fill with black
      set(H, 'EdgeColor', 'none')

   end
date/time username edit summary
04:41, 23 November 2005 en:User:Oleg Alexandrov (fix bug)
04:34, 23 November 2005 en:User:Oleg Alexandrov (<span class="autocomment"><a href="/wiki/Image:An_infinitely_differentiable_function_which_is_not_analytic_illustration.png#Source_code" title="Image:An infinitely differentiable function which is not analytic illustration.png">→</a>Source code -</span> lang)
04:33, 23 November 2005 en:User:Mathbot (source_code)
04:32, 23 November 2005 en:User:Oleg Alexandrov (format)
04:29, 23 November 2005 en:User:Oleg Alexandrov

Лицензирование

Public domain Я, владелец авторских прав на это произведение, передаю его в общественное достояние. Это разрешение действует по всему миру.
В некоторых странах это не может быть возможно юридически, в таком случае:
Я даю право кому угодно использовать данное произведение в любых целях без каких-либо условий, за исключением таких условий, которые требуются по закону.

Исходный журнал загрузок

Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.

Click on date to download the file or see the image uploaded on that date.

Краткие подписи

Добавьте однострочное описание того, что собой представляет этот файл

Элементы, изображённые на этом файле

изображённый объект

image/png

146 пиксель

500 пиксель

История файла

Нажмите на дату/время, чтобы увидеть версию файла от того времени.

Дата/времяМиниатюраРазмерыУчастникПримечание
текущий19:47, 18 марта 2006Миниатюра для версии от 19:47, 18 марта 2006500 × 146 (6 КБ)MaksimLa bildo estas kopiita de wikipedia:en. La originala priskribo estas: == Licensing == {{PD-self}} ==Source code (Matlab)== <pre> <nowiki> function main() thickness1=2; thickness2=1.5; arrowsize=10; arrow_type=2; ball_rad=0.03; blue=[0, 0, 1];

Нет страниц, использующих этот файл.

Глобальное использование файла

Данный файл используется в следующих вики: